为什么AI数不清Strawberry里有几个 r?Karpathy:我用表情包给你解释一下
原标题:为什么AI数不清Strawberry里有几个 r?Karpathy:我用表情包给你解释一下
导读:
科创板日报月日讯近日谷歌母公司旗下实验室孵化企业宣布与加拿大户外服饰品牌始祖鸟达成合作将联合推出机器人运动裤寓意世界上最好的登山者山羊这是登月工厂研...
《科创板日报》7月27日讯 近日,谷歌母公司Alphabet旗下X实验室孵化企业Skip宣布与加拿大户外服饰品牌始祖鸟达成合作,将联合推出“机器人运动裤”MO/GO。MO/GO寓意世界上最好的登山者山羊,这是Alphabet登月工厂研发的刚柔混合外骨骼机器人技术的首次商业化尝试。MO/GO以始...
声明:本文来自于微信公众号机器之心,作者:机器之心,授权 转载发布。
让模型知道自己擅长什么、不擅长什么是一个很重要的问题。
还记得这些天大模型被揪出来的低级错误吗?
不知道9.11和9.9哪个大,数不清 Strawberry 里面有多少个 r…… 每每被发现一个弱点,大模型都只能接受人们的无情嘲笑。
嘲笑之后,大家也冷静了下来,开始思考:低级错误背后的本质是什么?
大家普遍认为,是 Token 化(Tokenization)的锅。
在国内,Tokenization 经常被翻译成「分词」。这个翻译有一定的误导性,因为 Tokenization 里的 token 指的未必是词,也可以是标点符号、数字或者某个单词的一部分。比如,在 OpenAI 提供的一个工具中,我们可以看到,Strawberry 这个单词就被分为了 Str-aw-berry 三个 token。在这种情况下,你让 AI 大模型数单词里有几个 r,属实是为难它。
除了草莓 (Strawberry) 之外,还有一个很好的例子就是「Schoolbooks」这个词,AI 模型会把它分为 school 和 books 两个 token。
这个问题也吸引了刚刚投身 AI + 教育行业的 Karpathy 的注意。为了让大家直观地看到大模型眼里的文字世界,他特地写了一个小程序,用表情符号(emoji)来表示 token。
按照小程序被设计的表示方法,「How many letters 'r' in the word'strawberry'?」在 LLM 看来是这样的:
一段文本在 LLM 看来会是这样:
但这种解释也引起了另一种疑问:如果你让大模型把 Strawberry 这个词的每个字母都列出来,然后删掉 r 以外的字母,大模型就能数对了,那大模型为什么自己不这么做呢?它好像不太会利用自己的能力。
对此,Karpathy 给出的回复是「因为没有人教它这么做」。
其实,如果你在 Prompt 里加上「think step by step」等思维链相关「咒语」,大模型是可以分步骤解决问题的,而且很有可能数对「r」的数量。那它之前不假思索就给出答案,是不是因为过度自信?
对此,有人猜测说,大模型公司给 LLM 的设定可能就是让它在一个问题上花费尽可能少的时间,除非你明确要求,不然它不会主动去深入思考。
对于这种说法,我们也测试了一下。结果发现,如果明确要求深入思考,模型确实立马就会数了:
这就类似于它有两套系统:快速、依靠直觉的系统1和较慢、较具计划性且更仰赖逻辑的系统2,平时默认使用系统1。
这些只是猜测。
综合最近的 来看,我们会发现一个有意思的现象:一方面,大模型都能在人类奥数中拿银牌了;而它们又在数数、比大小方面集体翻车。类似的例子还有不会玩几岁小孩都会玩的井字棋,不会判断两个圆是否重叠等。
Karpathy 给这种现象取了个名字 ——Jagged Intelligence(Jagged 的意思是参差不齐的)。这种参差不齐的智能表现和人类是不一样的,人类的知识体系和解决问题的能力在成长过程中是高度相关的,并且是同步线性发展的,而不是在某些领域突然大幅度提升,而在其他领域却停滞不前。
Karpathy 认为,这一问题的核心在于目前的大模型缺乏「认知自我知识(cognitive self-knowledge)」( 模型自身对其知识和能力的自我认知 )。如果模型具备这种能力,它可能会在面对「数字母」这样的问题时回答说,「我不太擅长数字母,让我使用代码解释器来解决这个问题」。
这一问题的解决方案可能包括但不限于扩大规模,可能需要在整个技术栈的各个方面都做一些工作,比如在后训练阶段采用更复杂的方法。
对此,Karpathy 推荐阅读 Llama3论文的4.3.6章节。在此章节中,Meta 的研究者提出了一些方法来让模型「只回答它知道的问题」。
该章节写到:
我们遵循的原则是,后训练应使模型「知道它知道什么」,而不是增加知识。我们的主要方法是生成数据,使模型生成与预训练数据中的事实数据子集保持一致。为此,我们开发了一种知识探测技术,利用 Llama3的 in-context 能力。数据生成过程包括以下步骤:
1、从预训练数据中提取数据片段。
2、通过提示 Llama3生成一个关于这些片段(上下文)的事实问题。
3、采样 Llama3关于该问题的回答。
4、以原始上下文为参照,以 Llama3为裁判,评估生成的回答的正确性。
5、以 Llama3为裁判,评估生成回答的信息量。
6、对于 Llama3模型在多个生成过程中提供的信息虽多但内容不正确的回答,使用 Llama3生成拒绝回答的内容。
我们使用知识探测生成的数据来鼓励模型只回答它知道的问题,而拒绝回答它不确定的问题。预训练数据并不总是与事实一致或正确。我们还收集了一组有限的标注事实性数据,这些数据涉及与事实相矛盾或不正确的陈述。
Karpathy 表示,这种参差不齐的智能问题值得注意,尤其是在生产环境中。我们应该致力于让模型只完成他们擅长的任务,不擅长的任务由人类及时接手。
Meta 的做法只是一种参考。如果你有更好的解决方案,欢迎在评论区留言。
参考链接:https://www.reddit.com/r/ChatGPT/comments/1e6do2a/why_the_strawberry_problem_is_hard_for_llms/
https://x.com/karpathy/status/1816531576228053133