DeepSeek指路算力优化路径,国产AI有望实现生态闭环
原标题:DeepSeek指路算力优化路径,国产AI有望实现生态闭环
导读:
索尼电影部门总裁近日在上的演讲中分享了有关直到黎明电影版的消息其中提到虽然这部电影在某些方面与原版直到黎明游戏明显不同但它仍然尊重该系列的原始素材同时考虑算法精度和系统效率除了...
索尼电影部门总裁AshleyBrucks近日在CES2025上的演讲中分享了有关直到黎明》电影版的消息,其中提到虽然这部电影在某些方面与原版《直到黎明》游戏明显不同,但它仍然尊重该系列的原始素材。
·DeepSeek同时考虑算法精度和系统效率。除了极致的底层优化,协同优化也可能让大模型在利用国产算力时达到甚至超越英伟达GPU的性能。从最顶层的产品应用到底层的基础设施,的每一个层级都已经形成了 好的生态,每一个层级上都存在着优化空间。
·未来推理或将有2-3个数量级的提升。训练算力需求仍会有所增长,总体来看,算力需求会激增,成本会更高,但算力成本还有巨大压缩空间,单位算力成本将下降,效率得到提升。
“原来大家觉得训练模型只需要招一批工程师,再融一大笔钱,买一大批卡,这事就能干了。但现在不是了,现在还需要招一批懂系统的人,这是AI行业的一个很大变化。”上海交通大学长聘教轨副教授、无问芯穹首席科学家戴国浩日前在接受澎湃科技采访时表示,DeepSeek使用的训练服务算力并没有随模型尺寸等比例成倍增加,而是通过底层优化释放底层硬件性能、软硬件协同创新“压榨”算力,大模型“炼制”开始追求极致性价比。
利用2048张H800 GPU,预估不到两个月时间训练DeepSeek V3。H800每小时每卡2美元租赁成本,训练成本550万美元左右,其中不包括前期探索模型架构、消融实验等开销。戴国浩表示,DeepSeek打响生态闭环 枪,对国产算力优化提出更清晰的路径。总体来看,算力需求会激增,推理算力或将有2-3个数量级的提升,算力成本会更高,但算力成本还有巨大压缩空间,单位算力成本将下降,效率得到提升。
上海交通大学长聘教轨副教授、无问芯穹首席科学家戴国浩。
底层优化释放底层硬件性能
拆解DeepSeek的技术报告,相对于模型架构、预训练方法和后训练方法,DeepSeek着重介绍系统架构。相比之下,国外开源模型的公开技术报告中对于系统架构的介绍篇幅较少。
戴国浩表示,DeepSeek的极致性价比来自于两大类优化,一是了解硬件细节,实现极致的底层优化;二是打通软件硬件,实现联合协同优化。前者基于确定性的算法模型及底层硬件,开展通信优化、内存优化,这些优化不改变任何程序执行结果。后者如混合精度的量化、对底层硬件的修改,扩大系统的优化空间。
例如在通信优化上,DeepSeek采用双向流水线机制,让计算和通信将近100%重叠,实现更大的专家并行,使得模型能够像流水线一样“边算边传”,这被认为是使用有限资源训练更大模型的有效手段。在底层优化上,PTX的优化使得系统和模型可以更好地释放底层硬件性能,这也是DeepSeek能够更精细控制底层硬件、实现“边算边传”的重要原因。
训练一个大模型,首先要有GPU。但开发者并不需要关注底层硬件的模样,只需要通过Python等高层次语言或英伟达CUDA等硬件接口进行编程,最终调用底层的GPU。而能够直接和底层硬件发生交互的PTX一般被隐藏在CUDA的驱动中,PTX是比CUDA更底层的硬件接口语言。越接近底层的语言对硬件的利用效率越高,在同样硬件能力下实现更精细的通信任务管理,将最费时的跨界点通信效率提升60%,跑出效果更好的模型。
PTX编程并非行业机密,但此前几乎所有大模型算法工程师不会接触到这一层语言。如果能够编程和调用PTX,就可以更好地调用底层硬件。戴国浩解释,这并不意味着绕过了英伟达CUDA的垄断。从编程范式来看,DeepSeek在某些代码上绕过了CUDA的编程,但并未完全绕开CUDA生态。
协同创新“压榨”算力
“从最顶层的产品应用到底层的基础设施,大模型的每一个层级都已经形成了 好的生态,每一个层级上都存在着优化空间。”戴国浩表示,除了极致的底层优化,协同优化也可能让大模型在利用国产算力时达到甚至超越英伟达GPU的性能。“原来的算法架构只考虑算法精度,大家觉得只要算法足够好就行了,但DeepSeek同时考虑算法精度和系统效率。”
例如英伟达H800集成了FP8计算单元,戴国浩表示,使用更低精度训练,理论上可带来2倍的计算加速和50%的显存降低。但由于低精度训练极易损失模型效果,以及大模型高昂的试错成本,开源社区中尚无项目实现大规模FP8预训练落地。而DeepSeek实现了FP8低比特训练出高质量模型,坚定“榨干”硬件所有潜力。
DeepSeek采用 A(隐空间注意力计算机制)架构和MoE(混合专家模型)架构, A架构可进一步降低推理消耗的内存。在模型训练过程中,MoE架构采用1个共享专家和256个路由专家,每个token 8个路由专家。
据介绍,MoE架构训练超大模型,最大的挑战是负载均衡。DeepSeek引入一个专家偏见(expert bias),保证专家负载均衡,提升集群效率。专家偏见只影响专家路由,不产生任何梯度影响。专家偏见动态调整,如果某个专家过载,就会降低偏见,如果某个专家负载不足,就会增加偏见。DeepSeek采用MoE架构,又在算法和软件层面 了MoE本身由于专家并行带来的通信开销问题,充分挖掘了算法、软件、硬件协同创新。
打响国产AI生态闭环 枪
“无论是底层优化,还是协同优化,必须要对底层硬件和系统有 深刻的理解,既要懂算法,又要懂硬件。”戴国浩表示,以PTX编程为例,这需要开发者清晰了解英伟达的硬件是如何制造的,因此门槛高,大模型公司少有对PTX编程。业内拥有系统优化能力的团队懂PTX编程,但模型训练本身投入大,难以持续优化。
DeepSeek打响了 枪,对国产算力优化提出了更清晰的路径。降低算力成本是国内发展大模型的核心之一。软硬件协同路径包含模型、系统、芯片等关键因素,在国外,这三者已经形成了完备的闭环生态。戴国浩表示,在以往的认知中,使用国外的芯片预训练、使用国外的模型做微调,得到的模型跟国外的闭源或开源模型相比总存在一定 ,国内的系统、芯片也难以形成闭环生态。但DeepSeek的出现使得国内的模型超越了国外的模型,软硬件协同降低了算力成本,这套方 可以打破现在的闭环生态瓶颈。
戴国浩说,DeepSeek在论文中单独用2页文字提出对于未来硬件设计的发展建议,进一步佐证了模型、系统、硬件的闭环路线。国外的闭环AI生态始终是一个同构的AI系统,其核心竞争力就在于CUDA-X的垂直整合能力。他认为,未来国内AI发展要通过调动跨越软硬件和上下游生态,加大模型、芯片、系统协同优化和垂直打通,例如根据新一代模型架构来定义未来芯片的底层电路实现、根据国产AI系统的互联通信方式设计 的混合专家模型架构。
“如何将国内的模型、系统和芯片形成自主可控的闭环,这是未来一定会发生的事。”戴国浩表示,DeepSeek的崛起对国产算力的发展是好消息。未来推理算力或将有2-3个数量级的提升。训练算力需求仍会有所增长。总体来看,算力需求会激增,成本会更高,但算力成本还有巨大压缩空间,单位算力成本将下降,效率得到提升。
戴国浩判断,未来大模型的发展趋势,一是继续国产化,二是极致的软硬件协同优化带来成本下降,提升模型训练和应用的极致性价比。性价比越高,算力需求量就越大,算力越吃紧。当前中国算力生态存在供不应求和供过于求的双重矛盾,中国特有的AI基础设施格局是多模型和多芯片,存在大量异构算力,需要把他们变得能用、好用,在使用闭环中形成硬件和算法的正向循环。戴国浩表示,要通过软硬协同和多元异构压榨算力,降低获取强大基座模型的成本, 算力缺口,以有限算力实现国产模型能力赶超。